What Is an Aneurysm?
An aneurysm (AN-u-rism) is a balloon-like bulge in an artery. Arteries are blood vessels that carry oxygen-rich blood to your body.
Arteries have thick walls to withstand normal blood pressure. However, certain medical problems, genetic conditions, and trauma can damage or injure artery walls. The force of blood pushing against the weakened or injured walls can cause an aneurysm.
An aneurysm can grow large and rupture (burst) or dissect. A rupture causes dangerous bleeding inside the body. A dissection is a split in one or more layers of the artery wall. The split causes bleeding into and along the layers of the artery wall.
Both rupture and dissection often are fatal.
Overview
Most aneurysms occur in the aorta, the main artery that carries oxygen-rich blood from the heart to the body. The aorta goes through the chest and abdomen.
An aneurysm that occurs in the chest portion of the aorta is called a thoracic (tho-RAS-ik) aortic aneurysm. An aneurysm that occurs in the abdominal portion of the aorta is called an abdominal aortic aneurysm.
Aneurysms also can occur in other arteries, but these types of aneurysm are less common. This article focuses on aortic aneurysms.
About 13,000 Americans die each year from aortic aneurysms. Most of the deaths result from rupture or dissection.
Early diagnosis and treatment can help prevent rupture and dissection. However, aneurysms can develop and grow large before causing any symptoms. Thus, people who are at high risk for aneurysms can benefit from early, routine screening.
Outlook
Doctors often can successfully treat aortic aneurysms with medicines or surgery if they’re found in time. Medicines may be given to lower blood pressure, relax blood vessels, and reduce the risk of rupture.
Large aortic aneurysms often can be repaired with surgery. During surgery, the weak or damaged portion of the aorta is replaced or reinforced.
Types of Aneurysms
Aortic Aneurysms
The two types of aortic aneurysm are abdominal aortic aneurysm and thoracic aortic aneurysm. Some people have both types.
Aortic Aneurysms
Figure A shows a normal aorta. Figure B shows a thoracic aortic aneurysm, which is located behind the heart. Figure C shows an abdominal aortic aneurysm, which is located below the arteries that supply blood to the kidneys.
Abdominal Aortic Aneurysms
An aneurysm that occurs in the abdominal portion of the aorta is called an abdominal aortic aneurysm (AAA). Most aortic aneurysms are AAAs.
These aneurysms are found more often now than in the past because of computed tomography (to-MOG-rah-fee) scans, or CT scans, done for other medical problems.
Small AAAs rarely rupture. However, AAAs can grow very large without causing symptoms. Routine checkups and treatment for an AAA can help prevent growth and rupture.
Thoracic Aortic Aneurysms
An aneurysm that occurs in the chest portion of the aorta (above the diaphragm, a muscle that helps you breathe) is called a thoracic aortic aneurysm (TAA).
TAAs don't always cause symptoms, even when they're large. Only half of all people who have TAAs notice any symptoms. TAAs are found more often now than in the past because of chest CT scans done for other medical problems.
With a common type of TAA, the walls of the aorta weaken and a section close to the heart enlarges. As a result, the valve between the heart and the aorta can't close properly. This allows blood to leak back into the heart.
A less common type of TAA can develop in the upper back, away from the heart. A TAA in this location may result from an injury to the chest, such as from a car crash.
Other Types of Aneurysms
Brain Aneurysms
Aneurysms in the arteries of the brain are called cerebral (seh-RE-bral)
aneurysms or brain aneurysms. Brain aneurysms also are called berry aneurysms because they're often the size of a small berry.
Brain Aneurysm
The illustration shows a typical location of a brain aneurysm in the arteries that supply blood to the brain. The inset image shows a closeup view of the sac-like aneurysm.
Most brain aneurysms cause no symptoms until they become large, begin to leak blood, or rupture (burst). A ruptured brain aneurysm can cause a stroke.
Peripheral Aneurysms
Aneurysms that occur in arteries other than the aorta and the brain arteries are called peripheral (peh-RIF-eh-ral) aneurysms. Common locations for peripheral aneurysms include the popliteal (pop-li-TE-al), femoral (FEM-o-ral), and carotid (ka-ROT-id) arteries.
The popliteal arteries run down the back of the thighs, behind the knees. The femoral arteries are the main arteries in the groin. The carotid arteries are the two main arteries on each side of your neck.
Peripheral aneurysms aren’t as likely to rupture or dissect as aortic aneurysms. However, blood clots can form in peripheral aneurysms. If a blood clot breaks away from the aneurysm, it can block blood flow through the artery.
If a peripheral aneurysm is large, it can press on a nearby nerve or vein and cause pain, numbness, or swelling.
Other Names for Aneurysm
Abdominal aortic aneurysm
Aortic aneurysm
Berry aneurysm
Brain aneurysm
Cerebral aneurysm
Peripheral aneurysm
Thoracic aortic aneurysm
What Causes an Aneurysm?
The force of blood pushing against the walls of an artery combined with damage or injury to the artery’s walls can cause an aneurysm.
Many conditions and factors can damage and weaken the walls of the aorta and cause aortic aneurysms. Examples include aging, smoking, high blood pressure, and atherosclerosis (ath-er-o-skler-O-sis). Atherosclerosis is the hardening and narrowing of the arteries due to the buildup of a waxy substance called plaque (plak).
Rarely, infections—such as untreated syphilis (a sexually transmitted infection)—can cause aortic aneurysms. Aortic aneurysms also can occur as a result of diseases that inflame the blood vessels, such as vasculitis (vas-kyu-LI-tis).
A family history of aneurysms also may play a role in causing aortic aneurysms.
In addition to the factors above, certain genetic conditions may cause thoracic aortic aneurysms (TAAs). Examples of these conditions include Marfan syndrome, Loeys-Dietz syndrome, Ehlers-Danlos syndrome (the vascular type), and Turner syndrome.
These genetic conditions can weaken the body’s connective tissues and damage the aorta. People who have these conditions tend to develop aneurysms at a younger age than other people. They’re also at higher risk for rupture and dissection.
Trauma, such as a car accident, also can damage the walls of the aorta and lead to TAAs.
Researchers continue to look for other causes of aortic aneurysms. For example, they’re looking for genetic mutations (changes in the genes) that may contribute to or cause aneurysms.
Who Is at Risk for an Aneurysm?
Certain factors put you at higher risk for an aortic aneurysm. These factors include:
Male gender. Men are more likely than women to have aortic aneurysms.
Age. The risk for abdominal aortic aneurysms increases as you get older. These aneurysms are more likely to occur in people who are aged 65 or older.
Smoking. Smoking can damage and weaken the walls of the aorta.
A family history of aortic aneurysms. People who have family histories of aortic aneurysms are at higher risk for the condition, and they may have aneurysms before the age of 65.
A history of aneurysms in the arteries of the legs.
Certain diseases and conditions that weaken the walls of the aorta. Examples include high blood pressure and atherosclerosis.
Having a bicuspid aortic valve can raise the risk of having a thoracic aortic aneurysm. A bicuspid aortic valve has two leaflets instead of the typical three.
Car accidents or trauma also can injure the arteries and increase the risk for aneurysms.
If you have any of these risk factors, talk with your doctor about whether you need screening for aneurysms.
What Are the Signs and Symptoms of an Aneurysm?
The signs and symptoms of an aortic aneurysm depend on the type and location of the aneurysm. Signs and symptoms also depend on whether the aneurysm has ruptured (burst) or is affecting other parts of the body.
Aneurysms can develop and grow for years without causing any signs or symptoms. They often don't cause signs or symptoms until they rupture, grow large enough to press on nearby body parts, or block blood flow.
Abdominal Aortic Aneurysms
Most abdominal aortic aneurysms (AAAs) develop slowly over years. They often don't cause signs or symptoms unless they rupture. If you have an AAA, your doctor may feel a throbbing mass while checking your abdomen.
When symptoms are present, they can include:
A throbbing feeling in the abdomen
Deep pain in your back or the side of your abdomen
Steady, gnawing pain in your abdomen that lasts for hours or days
If an AAA ruptures, symptoms may include sudden, severe pain in your lower abdomen and back; nausea (feeling sick to your stomach) and vomiting; constipation and problems with urination; clammy, sweaty skin; light-headedness; and a rapid heart rate when standing up.
Internal bleeding from a ruptured AAA can send you into shock. Shock is a life-threatening condition in which blood pressure drops so low that the brain, kidneys, and other vital organs can't get enough blood to work well. Shock can be fatal if it’s not treated right away.
Thoracic Aortic Aneurysms
A thoracic aortic aneurysm (TAA) may not cause symptoms until it dissects or grows large. If you have symptoms, they may include:
Pain in your jaw, neck, back, or chest
Coughing and/or hoarseness
Shortness of breath and/or trouble breathing or swallowing
A dissection is a split in one or more layers of the artery wall. The split causes bleeding into and along the layers of the artery wall.
If a TAA ruptures or dissects, you may feel sudden, severe, sharp or stabbing pain starting in your upper back and moving down into your abdomen. You may have pain in your chest and arms, and you can quickly go into shock.
If you have any symptoms of TAA or aortic dissection, call 9–1–1. If left untreated, these conditions may lead to organ damage or death.
How Is an Aneurysm Diagnosed?
If you have an aortic aneurysm but no symptoms, your doctor may find it by chance during a routine physical exam. More often, doctors find aneurysms during tests done for other reasons, such as chest or abdominal pain.
If you have an abdominal aortic aneurysm (AAA), your doctor may feel a throbbing mass in your abdomen. A rapidly growing aneurysm about to rupture (burst) can be tender and very painful when pressed. If you're overweight or obese, it may be hard for your doctor to feel even a large AAA.
If you have an AAA, your doctor may hear rushing blood flow instead of the normal whooshing sound when listening to your abdomen with a stethoscope.
Specialists Involved
Your primary care doctor may refer you to a cardiothoracic or vascular surgeon for diagnosis and treatment of an aortic aneurysm.
A cardiothoracic surgeon does surgery on the heart, lungs, and other organs and structures in the chest, including the aorta. A vascular surgeon does surgery on the aorta and other blood vessels, except those of the heart and brain.
Diagnostic Tests and Procedures
To diagnose and study an aneurysm, your doctor may recommend one or more of the following tests.
Ultrasound and Echocardiography
Ultrasound and echocardiography (echo) are simple, painless tests that use sound waves to create pictures of the structures inside your body. These tests can show the size of an aortic aneurysm, if one is found.
Computed Tomography Scan
A computed tomography scan, or CT scan, is a painless test that uses x rays to take clear, detailed pictures of your organs.
During the test, your doctor will inject dye into a vein in your arm. The dye makes your arteries, including your aorta, visible on the CT scan pictures.
Your doctor may recommend this test if he or she thinks you have an AAA or a thoracic aortic aneurysm (TAA). A CT scan can show the size and shape of an aneurysm. This test provides more detailed pictures than an ultrasound or echo.
Magnetic Resonance Imaging
Magnetic resonance imaging (MRI) uses magnets and radio waves to create pictures of the organs and structures in your body. This test works well for detecting aneurysms and pinpointing their size and exact location.
Angiography
Angiography (an-jee-OG-ra-fee) is a test that uses dye and special x rays to show the insides of your arteries. This test shows the amount of damage and blockage in blood vessels.
Aortic angiography shows the inside of your aorta. The test may show the location and size of an aortic aneurysm.
How Is an Aneurysm Treated?
Aortic aneurysms are treated with medicines and surgery. Small aneurysms that are found early and aren’t causing symptoms may not need treatment. Other aneurysms need to be treated.
The goals of treatment may include:
Preventing the aneurysm from growing
Preventing or reversing damage to other body structures
Preventing or treating a rupture or dissection
Allowing you to continue doing your normal daily activities
Treatment for an aortic aneurysm is based on its size. Your doctor may recommend routine testing to make sure an aneurysm isn't getting bigger. This method usually is used for aneurysms that are smaller than 5 centimeters (about 2 inches) across.
How often you need testing (for example, every few months or every year) is based on the size of the aneurysm and how fast it's growing. The larger it is and the faster it's growing, the more often you may need to be checked.
Medicines
If you have an aortic aneurysm, your doctor may prescribe medicines before surgery or instead of surgery. Medicines are used to lower blood pressure, relax blood vessels, and lower the risk that the aneurysm will rupture (burst). Beta blockers and calcium channel blockers are the medicines most commonly used.
Surgery
Your doctor may recommend surgery if your aneurysm is growing quickly or is at risk of rupture or dissection.
The two main types of surgery to repair aortic aneurysms are open abdominal or open chest repair and endovascular repair.
Open Abdominal or Open Chest Repair
The standard and most common type of surgery for aortic aneurysms is open abdominal or open chest repair. This surgery involves a major incision (cut) in the abdomen or chest.
General anesthesia (AN-es-THE-ze-ah) is used during this procedure. The term “anesthesia” refers to a loss of feeling and awareness. General anesthesia temporarily puts you to sleep.
During the surgery, the aneurysm is removed. Then, the section of aorta is replaced with a graft made of material such as Dacron® or Teflon.® The surgery takes 3 to 6 hours; you’ll remain in the hospital for 5 to 8 days.
If needed, repair of the aortic heart valve also may be done during open abdominal or open chest surgery.
It often takes a month to recover from open abdominal or open chest surgery and return to full activity. Most patients make a full recovery.
Endovascular Repair
In endovascular repair, the aneurysm isn't removed. Instead, a graft is inserted into the aorta to strengthen it. Surgeons do this type of surgery using catheters (tubes) inserted into the arteries; it doesn't require surgically opening the chest or abdomen. General anesthesia is used during this procedure.
The surgeon first inserts a catheter into an artery in the groin (upper thigh) and threads it to the aneurysm. Then, using an x ray to see the artery, the surgeon threads the graft (also called a stent graft) into the aorta to the aneurysm.
The graft is then expanded inside the aorta and fastened in place to form a stable channel for blood flow. The graft reinforces the weakened section of the aorta. This helps prevent the aneurysm from rupturing.
Endovascular Repair
The illustration shows the placement of a stent graft in an aortic aneurysm. In figure A, a catheter is inserted into an artery in the groin (upper thigh). The catheter is threaded to the abdominal aorta, and the stent graft is released from the catheter. In figure B, the stent graft allows blood to flow through the aneurysm.
The recovery time for endovascular repair is less than the recovery time for open abdominal or open chest repair. However, doctors can’t repair all aortic aneurysms with endovascular repair. The location or size of an aneurysm may prevent the use of a stent graft.
How Can an Aneurysm Be Prevented?
The best way to prevent an aortic aneurysm is to avoid the factors that put you at higher risk for one. You can’t control all aortic aneurysm risk factors, but lifestyle changes can help you lower some risks.
For example, if you smoke, try to quit. Talk with your doctor about programs and products that can help you quit smoking. Also, try to avoid secondhand smoke. For more information about how to quit smoking, go to the Diseases and Conditions Index (DCI) Smoking and Your Heart article.
Another important lifestyle change is following a healthy diet. A healthy diet includes a variety of fruits, vegetables, and whole grains. It also includes lean meats, poultry, fish, beans, and fat-free or low-fat milk or milk products. A healthy diet is low in saturated fat, trans fat, cholesterol, sodium (salt), and added sugar.
For more information about following a healthy diet, go to the National Heart, Lung, and Blood Institute’s (NHLBI’s) Aim for a Healthy Weight Web site, "Your Guide to a Healthy Heart," and "Your Guide to Lowering Your Blood Pressure With DASH." All of these resources include general information about healthy eating.
Be as physically active as you can. Talk with your doctor about the amounts and types of physical activity that are safe for you. For more information about physical activity, go to the DCI Physical Activity and Your Heart article and the NHLBI’s "Your Guide to Physical Activity and Your Heart."
Work with your doctor to control medical conditions such as high blood pressure and high blood cholesterol. Follow your treatment plans and take all of your medicines as your doctor prescribes.
Screening for Aneurysms
Although you may not be able to prevent an aneurysm, early diagnosis and treatment can help prevent rupture and dissection.
Aneurysms can develop and grow large before causing any signs or symptoms. Thus, people who are at high risk for aneurysms may benefit from early, routine screening.
Your doctor may recommend routine screening if you’re:
A man between the ages of 65 and 75 who has ever smoked
A man or woman between the ages of 65 and 75 who has a family history of aneurysms
If you’re at risk, but not in one of these high-risk groups, ask your doctor whether screening will benefit you.
Living With an Aneurysm
If you have an aortic aneurysm, following your treatment plan and having ongoing medical care are important. Early diagnosis and treatment can help prevent rupture and dissection.
Your doctor may advise you to avoid heavy lifting or physical exertion. If your job requires heavy lifting, you may be advised to change jobs.
Also, try to avoid emotional crises. Strong emotions can cause blood pressure to rise, which increases the risk of rupture or dissection. Call your doctor if an emotional crisis occurs.
Your doctor may prescribe medicines to treat your aneurysm. Medicines can lower your blood pressure, relax your blood vessels, and lower the risk that the aneurysm will rupture (burst). Take all of your medicines exactly as your doctor prescribes.
If you have a small aneurysm that isn’t causing pain, you may not need treatment. However, aneurysms can develop and grow large before causing any symptoms. Thus, people who are at high risk for aneurysms may benefit from early, routine screening.
Clinical Trials
The National Heart, Lung, and Blood Institute (NHLBI) is strongly committed to supporting research aimed at preventing and treating heart, lung, and blood diseases and conditions and sleep disorders.
NHLBI-supported research has led to many advances in medical knowledge and care. For example, this research has uncovered some of the causes of various diseases and conditions, as well as ways to prevent, diagnose, or treat them.
The NHLBI continues to support research aimed at learning more about various diseases and conditions, including aneurysms. For example, the NHLBI currently is supporting a study on exercise therapy and aneurysms. The study’s goal is to find out whether exercise can limit the growth of small abdominal aortic aneurysms in older adults.
Ongoing research often depends on the willingness of volunteers to take part in clinical trials. Clinical trials test new ways to prevent, diagnose, or treat various diseases and conditions.
For example, new treatments for a disease or condition (such as medicines, medical devices, surgeries, or procedures) are tested in volunteers who have the illness. Testing shows whether a treatment is safe and effective in humans before it is made available for widespread use.
By taking part in a clinical trial, you can gain access to new treatments before they’re widely available. You also will have the support of a team of health care providers, who will likely monitor your health closely. Even if you don’t directly benefit from the results of a clinical trial, the information gathered can help others and add to scientific knowledge.
If you volunteer for a clinical trial, the research will be explained to you in detail. You’ll learn about treatments and tests you may receive, and the benefits and risks they may pose. You’ll also be given a chance to ask questions about the research. This process is called informed consent.
If you agree to take part in the trial, you’ll be asked to sign an informed consent form. This form is not a contract. You have the right to withdraw from a study at any time, for any reason. Also, you have the right to learn about new risks or findings that emerge during the trial.
For more information about clinical trials related to aneurysms, talk with your doctor. You also can visit the following Web sites to learn more about clinical research and to search for clinical trials:
http://clinicalresearch.nih.gov
www.clinicaltrials.gov
www.nhlbi.nih.gov/studies/index.htm
www.researchmatch.org
Source: NHLBI, NIH
Cerebral Aneurysms Information Page
Synonym(s): Aneurysm, Brain Aneurysm
Table of Contents
What is Cerebral Aneurysms?
Is there any treatment?
What is the prognosis?
What research is being done?
Clinical Trials
What is Cerebral Aneurysms?
A cerebral aneurysm is a weak or thin spot on a blood vessel in the brain that balloons out and fills with blood. An aneurysm can press on a nerve or surrounding tissue, and also leak or burst, which lets blood spill into surrounding tissues (called a hemorrhage). Cerebral aneurysms can occur at any age, although they are more common in adults than in children and are slightly more common in women than in men. The signs and symptoms of an unruptured cerebral aneurysm will partly depend on its size and rate of growth. For example, a small, unchanging aneurysm will generally produce no symptoms, whereas a larger aneurysm that is steadily growing may produce symptoms such as headache, numbness, loss of feeling in the face or problems with the eyes. Immediately after an aneurysm ruptures, an individual may experience such symptoms as a sudden and unusually severe headache, nausea, vision impairment, vomiting, and loss of consciousness.
Is there any treatment?
For unruptured aneurysms, treatment may be recommended for large or irregularly-shaped aneurysms or for those causing symptoms. Emergency treatment for individuals with a ruptured cerebral aneurysm may be required to restore deteriorating respiration and reduce abnormally high pressure within the brain. Treatment is necessary to prevent the aneurysm from rupturing again. Surgical treatment prevents repeat aneurysm rupture by placing a metal clip at the base of the aneurysm. Individuals for whom surgery is considered too risky may be treated by inserting the tip of a catheter into an artery in the groin and advancing it through the blood stream to the site of the aneurysm, where it is used to insert metal coils that induce clot formation within the aneurysm.
What is the prognosis?
The prognosis for a individual with a ruptured cerebral aneurysm depends on the location of the aneurysm, extent of bleeding or rebleeding, the person's age, general health, pre-existing neurological conditions, adn time between rupture and medical attention. Early diagnosis and treatment are important. A burst cerebral aneurysm may be fatal or could lead to hemorrhagic stroke, vasospasm (in which other blood vessels in the brain contract and limit blood flow), hydrocephalus, coma, or short-term and/or permanent brain damage. Recovery from treatment or rupture may take weeks to months.
What research is being done?
The National Institute of Neurological Disorders and Stroke (NINDS) conducts research in its laboratories at the National Institutes of Health (NIH) and also supports additional research through grants to major medical institutions. The NINDS supports a broad range of basic and clinical research on intracranial aneurysms and other vascular lesions of the nervous system. The Familial Intracranial Aneurysm study seeks to identify possible genes that may increase the risk of development of aneurysms in blood vessels in the brain. Other research projects include genome-wide studies to identify genes or DNA sequences that may indicate families harboring one type of aneurysm may be at increased risk of another type; studies of chromosomes to identify aneurysm-related genes; and additional research on microsurgical clipping and endovascular surgery to treat various types of ruptured and unruptured aneurysms.
NIH Patient Recruitment for Cerebral Aneurysms Clinical Trials
At NIH Clinical Center
Throughout the U.S. and Worldwide
NINDS Clinical Trials
Organizations
Brain Aneurysm Foundation |
NINDS, NIH
Cerebral Aneurysms Fact Sheet
Table of Contents
What is a cerebral aneurysm?
What causes a cerebral aneurysm?
How are aneurysms classified?
Who is at risk?
What are the dangers?
What are the symptoms?
How are cerebral aneurysms diagnosed?
How are cerebral aneurysms treated?
Can cerebral aneurysms be prevented?
What is the prognosis?
What research is being done?
Where can I get more information?
What is a cerebral aneurysm?
A cerebral aneurysm (also known as an intracranial or intracerebral aneurysm) is a weak or thin spot on a blood vessel in the brain that balloons out and fills with blood. The bulging aneurysm can put pressure on a nerve or surrounding brain tissue. It may also leak or rupture, spilling blood into the surrounding tissue (called a hemorrhage). Some cerebral aneurysms, particularly those that are very small, do not bleed or cause other problems. Cerebral aneurysms can occur anywhere in the brain, but most are located along a loop of arteries that run between the underside of the brain and the base of the skull.
What causes a cerebral aneurysm?
Cerebral aneurysms can be congenital, resulting from an inborn abnormality in an artery wall. Cerebral aneurysms are also more common in people with certain genetic diseases, such as connective tissue disorders and polycystic kidney disease, and certain circulatory disorders, such as arteriovenous malformations (snarled tangles of arteries and veins in the brain that disrupt blood flow).
Other causes include trauma or injury to the head, high blood pressure, infection, tumors, atherosclerosis (a blood vessel disease in which fats build up on the inside of artery walls) and other diseases of the vascular system, cigarette smoking, and drug abuse. Some investigators have speculated that oral contraceptives may increase the risk of developing aneurysms.
Aneurysms that result from an infection in the arterial wall are called mycotic aneurysms. Cancer-related aneurysms are often associated with tumors of the head and neck. Drug abuse, particularly the habitual use of cocaine, can inflame blood vessels and lead to the development of brain aneurysms.
How are aneurysms classified?
There are three types of cerebral aneurysm. A saccular aneurysm is a rounded or pouch-like sac of blood that is attached by a neck or stem to an artery or a branch of a blood vessel. Also known as a berry aneurysm (because it resembles a berry hanging from a vine), this most common form of cerebral aneurysm is typically found on arteries at the base of the brain. Saccular aneurysms occur most often in adults. A lateral aneurysm appears as a bulge on one wall of the blood vessel, while a fusiform aneurysm is formed by the widening along all walls of the vessel.
Aneurysms are also classified by size. Small aneurysms are less than 11 millimeters in diameter (about the size of a large pencil eraser), larger aneurysms are 11-25 millimeters (about the width of a dime), and giant aneurysms are greater than 25 millimeters in diameter (more than the width of a quarter).
Who is at risk?
Brain aneurysms can occur in anyone, at any age. They are more common in adults than in children and slightly more common in women than in men. People with certain inherited disorders are also at higher risk.
All cerebral aneurysms have the potential to rupture and cause bleeding within the brain. The incidence of reported ruptured aneurysm is about 10 in every 100,000 persons per year (about 30,000 individuals per year in the U.S.), most commonly in people between ages 30 and 60 years. Possible risk factors for rupture include hypertension, alcohol abuse, drug abuse (particularly cocaine), and smoking. In addition, the condition and size of the aneurysm affects the risk of rupture.
What are the dangers?
Aneurysms may burst and bleed into the brain, causing serious complications, including hemorrhagic stroke, permanent nerve damage, or death. Once it has burst, the aneurysm may burst again and bleed into the brain, and additional aneurysms may also occur. More commonly, rupture may cause a subarachnoid hemorrhage— bleeding into the space between the skull bone and the brain. A delayed but serious complication of subarachnoid hemorrhage is hydrocephalus, in which the excessive buildup of cerebrospinal fluid in the skull dilates fluid pathways called ventricles that can swell and press on the brain tissue. Another delayed postrupture complication is vasospasm, in which other blood vessels in the brain contract and limit blood flow to vital areas of the brain. This reduced blood flow can cause stroke or tissue damage.
What are the symptoms?
Most cerebral aneurysms do not show symptoms until they either become very large or burst. Small, unchanging aneurysms generally will not produce symptoms, whereas a larger aneurysm that is steadily growing may press on tissues and nerves. Symptoms may include pain above and behind the eye; numbness, weakness, or paralysis on one side of the face; dilated pupils; and vision changes. When an aneurysm hemorrhages, an individual may experience a sudden and extremely severe headache, double vision, nausea, vomiting, stiff neck, and/or loss of consciousness. Individuals usually describe the headache as “the worst headache of my life” and it is generally different in severity and intensity from other headaches people may experience. “Sentinel” or warning headaches may result from an aneurysm that leaks for days to weeks prior to rupture. Only a minority of individuals have a sentinel headache prior to aneurysm rupture.
Other signs that a cerebral aneurysm has burst include nausea and vomiting associated with a severe headache, a drooping eyelid, sensitivity to light, and change in mental status or level of awareness. Some individuals may have seizures. Individuals may lose consciousness briefly or go into prolonged coma. People experiencing this “worst headache,” especially when it is combined with any other symptoms, should seek immediate medical attention.
How are cerebral aneurysms diagnosed?
Most cerebral aneurysms go unnoticed until they rupture or are detected by brain imaging that may have been obtained for another condition. Several diagnostic methods are available to provide information about the aneurysm and the best form of treatment. The tests are usually obtained after a subarachnoid hemorrhage, to confirm the diagnosis of an aneurysm.
Angiography is a dye test used to analyze the arteries or veins. An intracerebral angiogram can detect the degree of narrowing or obstruction of an artery or blood vessel in the brain, head, or neck, and can identify changes in an artery or vein such as a weak spot like an aneurysm. It is used to diagnose stroke and to precisely determine the location, size, and shape of a brain tumor, aneurysm, or blood vessel that has bled. This test is usually performed in a hospital angiography suite. Following the injection of a local anesthetic, a flexible catheter is inserted into an artery and threaded through the body to the affected artery. A small amount of contrast dye (one that is highlighted on x-rays) is released into the bloodstream and allowed to travel into the head and neck. A series of x-rays is taken and changes, if present, are noted.
Computed tomography (CT) of the head is a fast, painless, noninvasive diagnostic tool that can reveal the presence of a cerebral aneurysm and determine, for those aneurysms that have burst, if blood has leaked into the brain. This is often the first diagnostic procedure ordered by a physician following suspected rupture. X-rays of the head are processed by a computer as two-dimensional cross-sectional images, or “slices,” of the brain and skull. Occasionally a contrast dye is injected into the bloodstream prior to scanning. This process, called CT angiography, produces sharper, more detailed images of blood flow in the brain arteries. CT is usually conducted at a testing facility or hospital outpatient setting.
Magnetic resonance imaging (MRI) uses computer-generated radio waves and a powerful magnetic field to produce detailed images of the brain and other body structures. Magnetic resonance angiography (MRA) produces more detailed images of blood vessels. The images may be seen as either three-dimensional pictures or two-dimensional cross-slices of the brain and vessels. These painless, noninvasive procedures can show the size and shape of an unruptured aneurysm and can detect bleeding in the brain.
Cerebrospinal fluid analysis may be ordered if a ruptured aneurysm is suspected. Following application of a local anesthetic, a small amount of this fluid (which protects the brain and spinal cord) is removed from the subarachnoid space—located between the spinal cord and the membranes that surround it—by a spinal needle and tested to detect any bleeding or brain hemorrhage. In individuals with suspected subarachnoid hemorrhage, this procedure is usually done in a hospital.
How are cerebral aneurysms treated?
Not all cerebral aneurysms burst. Some people with very small aneurysms may be monitored to detect any growth or onset of symptoms and to ensure aggressive treatment of coexisting medical problems and risk factors. Each case is unique, and considerations for treating an unruptured aneurysm include the type, size, and location of the aneurysm; risk of rupture; the individual’s age, health, and personal and family medical history; and risk of treatment.
Two surgical options are available for treating cerebral aneurysms, both of which carry some risk to the individual (such as possible damage to other blood vessels, the potential for aneurysm recurrence and rebleeding, and the risk of post-operative stroke).
Microvascular clipping involves cutting off the flow of blood to the aneurysm. Under anesthesia, a section of the skull is removed and the aneurysm is located. The neurosurgeon uses a microscope to isolate the blood vessel that feeds the aneurysm and places a small, metal, clothespin-like clip on the aneurysm’s neck, halting its blood supply. The clip remains in the person and prevents the risk of future bleeding. The piece of the skull is then replaced and the scalp is closed. Clipping has been shown to be highly effective, depending on the location, shape, and size of the aneurysm. In general, aneurysms that are completely clipped surgically do not return.
A related procedure is an occlusion, in which the surgeon clamps off (occludes) the entire artery that leads to the aneurysm. This procedure is often performed when the aneurysm has damaged the artery. An occlusion is sometimes accompanied by a bypass, in which a small blood vessel is surgically grafted to the brain artery, rerouting the flow of blood away from the section of the damaged artery.
Endovascular embolization is an alternative to surgery. Once the individual has been anesthetized, the doctor inserts a hollow plastic tube (a catheter) into an artery (usually in the groin) and threads it, using angiography, through the body to the site of the aneurysm. Using a guide wire, detachable coils (spirals of platinum wire) are passed through the catheter and released into the aneurysm. The coils fill the aneurysm, block it from circulation, and cause the blood to clot, which effectively destroys the aneurysm. The procedure may need to be performed more than once during the person’s lifetime.
People who receive treatment for an aneurysm must remain in bed until the bleeding stops. Underlying conditions, such as high blood pressure, should be treated. Other treatment for cerebral aneurysm is symptomatic and may include anticonvulsants to prevent seizures and analgesics to treat headache. Vasospasm can be treated with calcium channel-blocking drugs and sedatives may be ordered if the person is restless. A shunt may be surgically inserted into a ventricle several months following rupture if the buildup of cerebrospinal fluid is causing harmful pressure on surrounding tissue. Individuals who have suffered a subarachnoid hemorrhage often need rehabilitative, speech, and occupational therapy to regain lost function and learn to cope with any permanent disability.
Can cerebral aneurysms be prevented?
There are no known ways to prevent a cerebral aneurysm from forming. People with a diagnosed brain aneurysm should carefully control high blood pressure, stop smoking, and avoid cocaine use or other stimulant drugs. They should also consult with a doctor about the benefits and risks of taking aspirin or other drugs that thin the blood. Women should check with their doctors about the use of oral contraceptives.
What is the prognosis?
An unruptured aneurysm may go unnoticed throughout a person’s lifetime. A burst aneurysm, however, may be fatal or could lead to hemorrhagic stroke, vasospasm (the leading cause of disability or death following a burst aneurysm), hydrocephalus, coma, or short-term and/or permanent brain damage.
The prognosis for persons whose aneurysm has burst is largely dependent on the age and general health of the individual, other pre-existing neurological conditions, location of the aneurysm, extent of bleeding (and rebleeding), and time between rupture and medical attention. It is estimated that about 40 percent of individuals whose aneurysm has ruptured do not survive the first 24 hours; up to another 25 percent die from complications within 6 months. People who experience subarachnoid hemorrhage may have permanent neurological damage. Other individuals may recover with little or no neurological deficit. Delayed complications from a burst aneurysm may include hydrocephalus and vasospasm. Early diagnosis and treatment are important.
Individuals who receive treatment for an unruptured aneurysm generally require less rehabilitative therapy and recover more quickly than persons whose aneurysm has burst. Recovery from treatment or rupture may take weeks to months.
Clinical studies suggest that in the first six months after treatment patients treated with endovascular coiling have less disability than those with surgical clipping, but that beyond six months after treatment the amount of disability is about the same. Long-term results of coiling procedures are uncertain and investigators need to conduct more research on this topic, since some aneurysms can recur after coiling. Individuals may want to consult a specialist in both endovascular and surgical repair of aneurysms, to help provide greater understanding of treatment options.
What research is being done?
The National Institute of Neurological Disorders and Stroke (NINDS), a component of the National Institutes of Health (NIH) within the U.S. Department of Health and Human Services, is the nation’s primary supporter of research on the brain and nervous system. As part of its mission, the NINDS conducts research on intracranial aneurysms and other vascular lesions of the nervous system and supports studies through grants to medical institutions across the country.
The NINDS sponsored the International Study of Unruptured Intracranial Aneurysms, which included more than 4,000 people at 61 sites in the United States, Canada, and Europe. The findings suggest that the risk of rupture for most very small aneurysms (less than 7 millimeters in size) is small. The results also provide a more comprehensive look at these vascular defects and offer guidance to individuals and physicians facing the difficult decision about whether or not to treat an aneurysm surgically.
The Familial Intracranial Aneurysm Study is a collaborative research effort of scientists in the United States, Canada, Australia, and New Zealand to identify possible genes that may increase the risk of development of aneurysms in blood vessels of the brain. The study will involve 475 families with multiple affected family members. Researchers also hope to determine the effect of environmental factors such as cigarette smoking and high blood pressure on the expression of these genes.
The relationship between intracranial and aortic aneurysm has long been recognized but poorly quantified. Recent genome-wide association studies (GWAS) provide molecular evidence for shared biological function and activities (pathophysiology) of these aneurysms. A specific site on chromosome 9p21 has been identified as increasing the risk for both intracranial and aortic aneurysms. These GWAS data, along with linkage data to other susceptible locations for genes or DNA sequences, indicate that individuals and families harboring one type of aneurysm may be at especially increased risk of the other.
Other scientists are studying additional chromosomes and chromosomal regions to identify aneurysm-related genes.
Aspirin may lessen inflammation in cerebral aneurysms and reduce their incidence of rupture. Scientists using enhanced MRI to monitor the signal generated by macrophages (a type of white blood cell that travels to the injury site during the inflammatory response) hope to determine if daily aspirin intake for three months will reduce the MRI signal changes generated by macrophages in the aneurysm wall.
The incidence of intracranial aneurysms and subarachnoid hemorrhage is significantly higher in women after menopause than in men. Estrogen replacement therapy reduces the risk for subarachnoid hemorrhage in post-menopausal women. Researchers are investigating the role of estrogen in the pathophysiology of intracranial aneurysms.
Other research projects include studies of the effectiveness of microsurgical clipping and endovascular surgery to treat various types of ruptured and unruptured aneurysms, the use of various types of coils to block the flow of blood into the aneurysm, and the aspects of blood flow (hemodynamics), such as blood flow velocity and blood pressure, in initiating cerebral aneurysms.
Where can I get more information?
For more information on neurological disorders or research programs funded by the National Institute of Neurological Disorders and Stroke, contact the Institute's Brain Resources and Information Network (BRAIN) at:
BRAIN
P.O. Box 5801
Bethesda, MD 20824
(800) 352-9424
http://www.ninds.nih.gov
Information also is available from the following organizations:
Brain Aneurysm Foundation
|
American Stroke Association: A Division of American Heart Association
|
American Association of Neurological Surgeons
|
|
Prepared by:
Office of Communications and Public Liaison
National Institute of Neurological Disorders and Stroke
National Institutes of Health
Bethesda, MD 20892
Source: NINDS, NIH